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1. Regression of LEDs’ spectra

Before starting the discussion about
deconvolution a preliminary study is
presented about nonlinear regression of LED
spectra. This topic will be needed for
computer  s imulat ion of  spect ra l
measurements.

In an investigation spectra of more
than 60 different LEDs were measured with a
CCD-type detector. The resolution of these
measurements can be considered as 1 nm.
Then a model function was found with which
piecewise regression of LED spectra can be
performed in such a way that u ’ - v ’
chromaticity differences between the
original spectra and the regression functions are smaller than 0.0005 for almost all
LEDs. Formula (1) shows the general model function and 6 pieces (i = 1,…, 6) of
such a function were used for regression.
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Figure 1 shows such a piecewise regression of the spectrum of a blue LED. The
chromaticity difference in u’-v’ is 0.000 071 in this case.

2 Computer simulation of spectral measurements

For a computer simulation the above described regression functions were used as if they
would have been spectra of LEDs (original spectra in what follows). These original spectra
were represented as tables with resolution of 0.1 nm.

For bandpass function of the simulated spectroradiometer ideal triangular functions
belonging to different bandwidths (∆λ = 1 nm; 5 nm; 10 nm and 20 nm) were chosen, also
with 0.1 nm resolution. Applying convolution sums of the original spectrum and the
appropriate bandpass function, spectral data for any bandwidth and step could have been
calculated.

Spectral measurement data calculated in case of bandwidth and step ∆λ = 1 nm
were defined as the basic data set, hence 1 nm resolution is generally sufficient for
colorimetric calculations.

The problem how to reconstruct this basic data set knowing only spectral data
belonging to larger bandwidths and steps can be solved by applying deconvolution as
described in [1]. Here a brief description is presented about the essence of the procedure:
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Let ( )λS  denote the basic data set where { }780,779,,381,380: K=∈ Λλ . (The

dimension of elements in Λ  is nm, of course.) Let ( )λŜ  denote the function approximating

( )λS  where Λλ ∈  also.

Let ( )λ∆λ ,M  denote a piece of spectral data simulated for wavelength λ  with

bandwidth ∆λ. Here { }780380,,2380,380,380: =⋅+⋅++=∈ λ∆λ∆λ∆Γλ nK . Do not
forget that in this case the resolution of the original spectrum and the bandpass function is
0.1 nm.

Let ( )λ∆λ ,M̂  denote that value that can be calculated by a sum as a convolution of

( )λŜ  and the appropriate triangular bandpass function belonging to ∆λ. The resolution of

( )λŜ  and this bandpass function is and should be 1 nm.

Then changing the values ( )λŜ , where Λλ ∈ , a cost function of the form
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should be minimized.

3. Results

In the following example “spectrum” shown in Figure 1 was used. The bandwidth and step
were ∆λ = 10 nm. Figure 2 shows the basic data set, the spectral data (Sampling in the
figure) and the function of a simple Lagrange interpolation of the spectral data. Values of

this Lagrange interpolation function are initial values of ( )λŜ , i.e. the initial point the

numerical method was started from when minimizing ( )SE ˆ . Although deconvolution could

be performed in infinitely many different ways, if such an initial point is used as the starting
point, the deconvolved result is going to remain quite smooth.

Figure 3 shows the effect of deconvolution applied in this case. Table 1 summarizes
some results for different bandwidths.

Although this short draft paper deals only with one example, quite similar results are
reached when applying deconvolution for spectral data taken from spectra of different LED
types.
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Table 1. Summary of some results in case of “spectrum” shown in
Figure 1.

Chromaticity values of the basic data set: u’ = 0.1043; v’ = 0.2752.

∆λ = 20 nm 10 nm 5 nm

u’ = 0.1043 0.1043 0.1043

v’ = 0.2825 0.2771 0.2756
Spectral

data

1000⋅∆u’v’ = 7.2631 1.8736 0.4074

u’ = 0.1044 0.1044 0.1043

v’ = 0.2822 0.2769 0.2756

Simple

Lagrange

interpolation 1000⋅∆u’v’ = 6.9995 1.6467 0.4044

u’ = 0.1043 0.1043 0.1043

v’ = 0.2754 0.2752 0.2752
Deconvolved

spectrum

1000⋅∆u’v’ = 0.1809 0.0033 0.0004
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Figure 3
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